
Inertia-Adaptive Particle Swarm Optimizer for Improved Global Search

Kaushik Suresh, Sayan Ghosh, Debarati Kundu, Abhirup Sen, Swagatam Das and

Ajith Abraham
*

1
Department of Electronics and Telecommunication Engineering

Jadavpur University, Kolkata, India
*

Center of Excellence for Quantifiable Quality of Service,

Norwegian University of Science and Technology, Trondheim, Norway

ajith.abraham@ieee.org

Abstract

This paper describes a method for improving the final

accuracy and the convergence speed of Particle

Swarm Optimization (PSO) by adapting its inertia

factor in the velocity updating equation and also by

adding a new coefficient to the position updating

equation. These modifications do not impose any

serious requirements on the basic algorithm in terms

of the number of Function Evaluations (FEs). The new

algorithm has been shown to be statistically

significantly better than four recent variants of PSO

on an eight-function test-suite for the following

performance matrices: Quality of the final solution,

time to find out the solution, frequency of hitting the

optima, and scalability.

1. Introduction

The concept of particle swarms, although initially

introduced for simulating human social behavior, has

become very popular these days as an efficient means

of intelligent search and optimization. The Particle

Swarm Optimization (PSO) [1, 2], does not require

any gradient information of the function to be

optimized, uses only primitive mathematical operators

and is conceptually very simple. PSO emulates the

swarming behavior of insects, animals herding, birds

flocking and fish schooling, where these swarms

forage for food in a collaborative manner. PSO also

draws inspiration from the boid’s method of Craig

Reynolds and socio-cognition [2]. Particles are

conceptual entities, which search through a multi-

dimensional search space. At any particular instant,

each particle has a position and velocity. The position

vector of a particle with respect to the origin of the

search space represents a trial solution to the search

problem.

PSO is however not free from false and/or

premature convergence, especially over multimodal

fitness landscapes. In this article, we describe a new

variant of the basic PSO, which improves the

performance of the algorithm in two ways. Firstly, the

inertia factor of the classical PSO has been adapted in

such a fashion that whenever a particle moves far

away from the globally best position found so far by

the swarm, the effect of its inertial velocity will be

minimal. Secondly, a momentum factor has been

added to the position updating equation of the classical

PSO, which gives greater mobility to the particles

even when their velocities become very low due to

false convergence to some local minima.

2. The Particle Swarm Optimizers

2.1 The Classical PSO

PSO is in principle, a multi-agent parallel search

technique and bears many common features with other

population based optimization techniques, such as the

Genetic Algorithms (GAs) [3]. PSO starts with the

random initialization of a population of candidate

solutions (particles) over the fitness landscape.

However, unlike other evolutionary computing

techniques, PSO uses no direct recombination of

genetic material between individuals during the

search. Rather it works depending on the social

behavior of the particles in the swarm. Therefore, it

finds the global best solution by simply adjusting the

trajectory of each individual towards its own best

position and toward the best particle of the entire

swarm at each time-step (generation).

In a D-dimensional search space, the position

vector of the i-th particle is given by

),.......,,(,2,1, Diiii xxxX =
r

and velocity of the i-th

particle is given by),.......,,(,2,1, Diiii vvvV =
r

.

Positions and velocities are adjusted and the objective

function to be optimized)(iXf
r

 is evaluated with the

new coordinates at each time-step. The velocity and

position update equations for the d-th dimension of the

i-th particle in the swarm may be represented as:

))1((**

))1((**)1(

,22

,,11,)(,

−−+

−−+−=

txgbestrandC

txpbestrandCtvv

did

dididitdi

(1))()1()(,,, tvtxtx dididi +−=

where 1rand and 2rand are random positive numbers

uniformly distributed in (0,1) and are drawn anew for

each dimension of each particle. pbest is the personal

best solution found so far by an individual particle

while gbest represents the fittest particle found so far

by the entire community. The first term in the velocity

updating formula is referred to as the ‘cognitive part’.

The last term of the same formula is interpreted as the

‘social part’, which represents how an individual

particle is influenced by the other members of its

society. C1 and C2 are called acceleration coefficients

and they determine the relative influences of the

cognitive and social parts on the velocity of the

particle. The particle’s velocity is clamped to a

maximum value T
DvvvV],...,,[max,2max,1max,max =

r
. If in

d-th dimension, div , exceeds dvmax, specified by the

user, then the velocity of that dimension is assigned to

ddi vvsign max,, *)(, where sign(x) is the triple-valued

signum function.

2.2 Some significant variants of the classical

PSO

Since its introduction by Kennedy and Eberhart in

1995, PSO has been subjected to empirical [4-6] and

theoretical [7,8] investigations by several researchers.

Shi and Eberhart [9] introduced a new parameterω ,

now well-known as inertia weight, to the original

version of PSO in the following way:

(2)))1((**

))1((**)1(.

,22

,,11,)(,

−−+

−−+−=

txgbestrandC

txpbestrandCtvv

did

dididitdi ω

The inertia weight is used to balance the global and

local search abilities. A large inertia weight is more

appropriate for global search and a small inertia

weight facilitates local search.

Some other significant variants of the classical

PSO can be traced in [9 – 14].

3. The Inertia-adaptive PSO Algorithm

Premature convergence occurs when the positions

of the most of the particles of the swarm stop changing

over successive iterations although the global

optimum remains undiscovered. This may happen if

the swarm uses a small inertia weight [15] or a

constriction coefficient [7]. From the basic equations

of PSO, we see that if div , is small and in addition to

that didi xpbest ,, − and did xgbest ,− are small

enough, div , cannot attain a large value in the

upcoming generations. That would mean a loss of

exploration power. This can occur even at an early

stage of the search process, when the particle itself is

the global best causing didi xpbest ,, − and

did xgbest ,− to be zero and, gets damped quickly

with the ratioω . Also the swarm suffers from loss of

diversity in later generations if pbest and gbest are

close enough [17].

In this work we incorporate two modifications

into the classical PSO scheme which prevent false

convergence and helps provide excellent quality of

final result without imposing any serious burden in

terms of excess number of function evaluations (FEs).

The first of these modifications involves modulation

of the inertia factor ω according to distance of the

particles of a particular generation from the global

best. The value of ω for each particle is given by:

 







−=

dist

dist i

max_
1.0ωω , (3)

where)1,5.0(0 rand=ω , disti is the current Euclidean

distance of i-th particle from the global best i. e.

2
1

1

2
,)(














−= ∑

=

D

d

didi xgbestdist (4)

and max_dist is the maximum distance of a particle

from the global best in that generation i.e.

)(maxargdistmax_ i
i

dist= (5)

This modulation of the inertia factor ensures that

in case of particles that have moved away from the

global best, the effect of attraction towards global best

will predominate. To avoid premature convergence

this we must ensure that the particle has mobility in

the later stages. In order to achieve our purpose, the

position update equation is modified as follows:

)()1().1()(,,, tvtxtx dididi +−−= ρ (6)

where ρ is a uniformly distributed random number in

the range (-0.25, 0.25). From now on, we shall refer to

this new algorithm as IAPSO (Inertia-adaptive PSO).

4. Experimental Results

4.1 Benchmark functions

We have used eight well-known benchmarks [14]

to evaluate the performance of the proposed algorithm.

Here the proposed algorithm has been compared with

the classical PSO algorithm and four of its significant

variants over these benchmark functions. In Table 1, D

represents the number of dimensions (we used D = 30

and 60). An asymmetrical initialization procedure has

been used here following the work reported in [6].

4.2 Algorithms compared

Simulations were carried out to obtain a

comparative performance analysis of the proposed

IAPSO algorithm with respect to: (a) the basic PSO

(BPSO) with constant inertia weight (b) PSO-TVIW

[5] (c) HPSO-TVAC [11] (d) MPSO-TVAC [11], and

(e) CLPSO [12].

4.3 Population Size

Shi and Eberhart [15] showed that population size

had hardly any effect on the performance of PSO. van

den Bergh and Engelbrecht [19] also reported that

though there is slight improvement in solution quality

with increasing swarm sizes, a large swarm increases

the number of function evaluations (FEs) required to

converge to a prescribed error limit. In this work, for

all algorithms over all problems, we kept a constant

population size of 40 particles

4.4 Simulation Strategy

To make the comparison fair, the populations for

all the competitor algorithms (for all problems tested)

were initialized using the same random seeds. We

have run two separate sets of experiments over the

eight benchmark functions.

To judge the accuracy of different PSO-variants,

we first let each of them run for a very long time over

every benchmark function, until the number of

function evaluations (FEs) exceed a given upper limit

(which was fixed at 10
6
). We then record the final best

fitness achieved by each algorithm. In the second set

of experiments we run the PSO-variants on a function

and stop as soon as the best fitness value determined

by the algorithm reaches below a predefined threshold

value (here 10
-3

 for all benchmarks). Then we note the

number of FEs the algorithm takes. A lower number of

FEs corresponds to a faster algorithm. We employed

the best set of parameters for all competitive

algorithms, as found in the relevant literatures. For

IAPSO, we took 00.221 == CC .

All the algorithms discussed here have been

developed from scratch in Visual C++ on a Pentium

IV, 2.3 GHz PC, with 1024 KB cache and 2 GB of

main memory in Windows XP environment.

Table 1. Benchmark functions used

Function Mathematical Representation

Sphere

function ∑
=

=
D

i

ixXf

1

2
1)(

r

Rosenbrock’s

function
])1()(100[)(

22
1

1

2
12 −+−=∑

−

=

+ i

D

i

ii xxxXf
r

Rastrigin’s

function ∑
=

+−=
D

i

ii xxXf

1

2
3)10)2cos(10()(π

r

Griewank’s

function
1cos

4000
)(

11

2

4 +









−= ∏∑

==

D

i

i
D

i

i

i

xx
Xf
r

Ackley’s

function

ex
D

x
D

Xf

n

i

i

n

i

i

++














−













−−=

∑

∑

=

=

20)2cos(
1

exp

1
2.0exp20)(

1

1

2
5

π

r

Weierstrass

function

20,3,5.0

)]5.02cos([

))]5.0(2cos([)(

max

max

0

1

max

0

6

===

⋅−







+=

∑

∑ ∑

=

= =

kba

baD

xbaXf

k

k

kk

D

i

k

k

i
kk

π

π
r

Generalized

Penalized

function 1 ∑

∑

=

+

−

=

+

+−++

−+=

D

i

ini

D

i

ii

xuyy

yy
D

Xf

1

2
1

2

1

1

2
1

2
7

)4,100,10,(})1()](sin101.[

)1()(sin10{)(

π

π
πr

Generalized

Penalized

function 2

∑

∑

=

+

−

=

++−+

+−+=

D

i

iDD

ii

D

i

xuxx

xxxXf

1

22

1
22

1

1

1
2

8

)4,100,5,()]}2(sin1[)1(

)]3(sin1[)1()3({sin1.0)(

π

ππ
r









−<−−

≤≤−

>−

=

axaxk

axa

axaxk

mkaxu

i
m

i

i

i
m

i

i

,)(

,0

,)(

),,,(

Table 2. Average and the standard deviation of the best-of-run solution for the 50 independent
runs and the success rate tested on f1 to f8

The mean and the standard deviation (within

parenthesis) of the best-of-run solution for 50

independent runs of each of the six algorithms are

presented in Table 2. Table 3 compares the

algorithms on the quality of the best solution.

Since all the algorithms start with the same

initial population over each problem instance, we

used paired t-tests to compare the means of the

results produced by best and the second best

algorithms. The 10-th column of Table 2 reports the

statistical significance level of the difference of the

means of best two algorithms. Note that here ‘+’

indicates the t value of 49 degrees of freedom is

significant at a 0.05 level of significance by two-

tailed test, ‘-’ means the difference of means is not

statistically significant.

Table 3 shows, for all test functions and all

algorithms, the number of runs (out of 50) that

managed to find the optimum solution (within the

given tolerance) and also the average number of

function evaluations (in parentheses) needed to find

that solution. In Figure 1 we have graphically

presented the rate of convergence of all the methods

over four difficult test functions (in 60 dimensions).

We have refrained from presenting all graphs in

order to save space.

A close inspection of Table 2 reveals that out of

16 test-cases, in 13 instances, IAPSO alone could

achieve the minimum objective function value in a

given number of FEs. Again, in 11 cases out of

these 13, the difference of the means of IAPSO and

the second best algorithm (which in most of the

cases was CLPSO) remained statistically significant.

We note that in three cases (f7 with D = 60, f8 with D

= 30 and 60), the proposed method’s mean is

numerically larger (i.e., worse) than the mean of the

competitor (MPSO-TVAC or DE), but as the 10-th

column of Table 2 shows, this difference is not

statistically significant in the first two cases. Table 3

indicates that IAPSO could achieve better

accuracies, consuming lesser amount of

computational time. The overall results show that

Fun

ctio

n

D

FEs

Mean Best Value

(Standard Deviation)

Statistical

Significan

ce

Level BPSO PSO-TVIW
MPSO-

TVAC

HPSO-

TVAC
CLPSO IAPSO

f1

30

5×105 2.2612e+000

(1.16e+000)
2.1309e-002

(7.281e-006)

3.6351e-003

(4.62e-004)

1.5223e-005

(1.36e-005)
5.6114e-005

(2.51e-003)
1.8123e-048

(8.79e-048)
+

60
1×106 9.2084e+000

(2.923e+000)

4.8271e-003

(4.29e-004)

9.7362e-003

(7.113e-04)

1.8174e-004

(1.958e-07)

3.7621e-004

(5.28e-006)

8.3651e-034

(3.73e-042)
+

f2

30 5×105 2.0623e+004

(6.78e+004)

2.1962e+002

(8.45e+001)

6.8372e+001

(4.75e+00)

7.332e+001

(7.13e+001)

5.670e+001

(5.16e+001)

2.8676e+001

(2.68e-001) -
60

1×106 4.1336e+003

(3.69e+003)

7.0931e+002

(6.22e+001)

3.8274e+002

(2.378e+001)

1.9451e+002

(3.94e+002)

1.177e+002

(8.69e+001)

4.3567e+001

(1.06e-001) -

f3

30 5×105 5.6352e+001

(3.54e+001)

4.2455e+001

(1.96e+001)

9.5278e+001

(9.72e+00)

3.9426e+001

(3.10e+001)

1.3107e-001

(3.24e-001)

1.5713e-053

(2.07e-060)
+

60
1×106 1.2245e+002

(5.18e+001)

1.1283e+000

(4.46e-01)

3.7649e+001

(4.27e+00)

6.8186e+001

(4.13e+001)

8.4291e-001

(1.53e+000)

0.00e+000

(0.00e+000)
+

f4

30 5×105 9.5294e-001

(2.42e-001)

2.0621e-002

(5.58e-03)

9.8035e-001

(6.80e-03)

1.8235e-002

(2.93e-002)

1.1435e-003

(1.74e-003)

0.00e+000

(0.00e+000)
+

60
1×106 4.7364e+000

(1.77e+001)

4.0832e-001

(5.42e-002)

6.76249e-001

(4.27e-001)

1.2065e-002

(2.14e-003)

6.9734e-003

(4.05e-003)

0.00e+000

(0.00e+000)
+

f5

30 5×105 4.73e+000

(3.03e+000)

4.0364e-001

(2.81e-003)

7.94504e-002

(8.03e-003)

3.6982e+000

(1.95e-001)

2.7445e-003

(1.73e-003)

5.8924e-016

(0.00e+000)
+

60
1×106 8.5297e+000

(5.23e+000)

1.0222e+000

(1.82e-001)

5.2724e-001

(4.63e-007)

5.56e+000

(3.08e+000)

2.4501e-002

(1.33e-002)

2.9655e-015

(5.68e+020)
+

f6

30 5×105 2.04e+001

(1.43e+001)

3.9716e-001

(6.39e-002)

2.8962e-001

(2.25e-002)

7.6843e+000

(7.30e+000)

3.9812e-008

(1.95e-009)

3.0300-013

(1.60e-020)
+

60
1×106 1.79e+001

(7.31e+000)

3.0835e+001

(4.73e-001)

5.2184e-001

(2.94e-004)

1.3732e+001

(5.63e+000)

1.1403e-006

(3.26e-003)

3.9304e-010

(1.54e-009) -

f7

30 5×105 5.9242e+000

(4.88e+000)

1.0045e+001

(4.32e-001)

4.8605e+001

(1.08e+000)

4.5170e+000

(3.82e+000)

9.0408e-001

(1.77e-005)

1.1740e-001

(9.73e-004)
+

60 1×106 2.64e+001

(1.57e+001)

1.0400e+001

(8.54e-001)

5.81493e-001

(1.08e-002)

1.3531e+001

(7.77e+000)

1.8425e-001

(1.31e-001)

5.1963e-001

(2.61e-001) -

f8

30 5×105 4.92e+008

(2.41e+009)

2.1962e+000

(8.45e-001)

3.9553e-001

(4.26e-002)

1.32e+000

(7.26e-001)

8.2625e-001

(1.11e-005)

9.9903e-001

(3.05e-001) -
60 1×106 4.92e+008

(2.41e+009)

7.0931e+000

(6.22e-15)

4.855e-04

(6.41e-05)

1.24e+000

(5.40e-001)

8.47e-001

(6.79e+000)

6.79e+000

(5.07e+000)
+

the proposed method leads to significant

improvements in most cases.

Table 3 shows that the number of runs that

converges below a pre-specified cut-off value is also

greatest for IAPSO over most of the benchmark

problems covered here. This indicates the higher

robustness (i.e. the ability to produce similar results

over repeated runs on a single problem) of the

algorithm as compared to its other four competitors.

Usually in the community of stochastic search

algorithms, robust search is weighted over the

highest possible convergence rate

Table 3: Number of runs (out of 50) to optimality and the corresponding mean number of
function evaluations

 Fig 1a. Rosenbrock’s function (f2)

Fig 1.b Griewank’s function (f3)

F

D

Threshold

Value

No. of runs converging to the cut-off, Mean No. of FEs Required and (Std Deviation)

BPSO PSO-TVIW
MPSO-

TVAC

HPSO-

TVAC
CLPSO IAPSO

f1

30

1.00e-002

22, 9817.50

(8723.837)

50, 13039.65

(336.378)

50, 9410.04

(1231.278)

46, 6887.50

(22.281)

50, 37847.82

(4431.90)

50, 9492.64

(4371.276)

60 1.00e-002
16, 359834.33

(4353.825)

50, 51729.02

(3827.47)

50, 133282.72

(5326.366)

47, 136291.70

(238.944)

50, 278283.22

(32432.78)

50, 39928.40

(26431.627)

f2

30 1.00e-002 0 0 0 0
3, 203854.67

(3226.84)

5, 79928.20

(12345.74)

60 1.00e-002 0 0 0 0 0 0

f3

30 1.00e-002 0 0
5, 28372.40

(3225.63)

2, 26290.50

(7553.38)

6, 87812.83

(409.54)

50, 4883.78

(382.74)

60 1.00e-002 0 0
2, 733210.50

(4623.31)
0 0

50, 628389.73

(14383.82)

f4

30 1.00e-002
4, 9946.25

(314.821)

50, 227361.76

(11354.287)

50, 125092.84

(2473.98)

18, 82724.46

(4523.57)

46, 92071.38

(4651.34)

50, 3169.64

(761.65)

60 1.00e-002
2, 187635.50

(19224.46)

29,

287416.91

(7218.93)

3, 633782.33

(1217.25)

2, 92280.50

(3468.35)
0

50, 6176.84

(671.49)

f5

30 1.00e-002
4, 139584.25

(2563.38)

6,347285.83

(3382.229)

10, 129372.80

(8742. 93)

8, 76660.00

(4412.46)

12, 80566.67

(7823.76)

50, 3955.22

(451.89)

60 1.00e-002
2, 162258.50

(6922.83)
0

3, 664722.33

(4722.37)

4, 89840.25

(6823.86)
0

50, 4185.62

(447.81)

f6

30 1.00e-002
0

0

0

0

24, 97276.67

(3517.88)

50, 5704.02

(728.45)

60 1.00e-002
0

0

0

0

0

50, 6267.62

(265.82)

f7

30 1.00e-002
0

0

0

0

2, 126380.50

(4627.73)

7, 7868.56

(251.67)

60 1.00e-002
0

0

0

0

0

0

f8

30 1.00e-002
0

0

0

0

6, 2400.50

(3712.5)
0

60 1.00e-002
0

0

0

0

0

0

Fig 1.c Ackley’s function (f5)

Figure 1. Variation of the mean best value
with time (for dimension = 60)

5. Conclusions

This work has presented a new, efficient PSO

algorithm, which self-adapts the inertia weight over

different fitness landscapes. The new method has been

compared against the basic PSO and four well-known

PSO-variants, using an eight-function test suite, on the

following performance metrics: (a) solution quality,

(b) speed of convergence, and (c) frequency of hitting

the optimum. It has been shown to outperform its

nearest competitor in a statistically meaningful way

for majority of the test cases. Since all the algorithms

start with the same initial population, difference in

their performances must be due to the difference in

their internal operators and parameter values. Future

research will focus on studying the dynamics of the

particles under the proposed changes, in a

mathematical way.

References

[1] Kennedy, J., Eberhart, R. C: (1995) Particle swarm

optimization, In Proceedings of IEEE International

conference on Neural Networks. 1942-1948.

[2] Kennedy, J., Eberhart, R. C., and Shi, Y.: (2001)

Swarm Intelligence. Morgan Kaufman, USA.

[3] Goldberg, D. E.: (1975) Genetic Algorithms in

Search, Optimization and Machine Learning,

Addison-Wesley, Reading, MA.

[4] Kennedy, J.: (2003) Bare bones particle swarms, In

Proceedings of IEEE Swarm Intelligence

Symposium, 80-87.

[5] Shi, Y. and Eberhart, R. C.: (1999) Empirical Study

of particle swarm optimization, In Proceedings of

IEEE International Conference Evolutionary

Computation, Vol. 3 , 101-106.

[6] Angeline, P. J.: (1998) Evolutionary optimization

versus particle swarm optimization: Philosophy and

the performance difference, Lecture Notes in

Computer Science, vol. 1447, Evolutionary

Programming VII, 84-89.

[7] Clerc, M. and Kennedy, J.: (2002) The particle

swarm - explosion, stability, and convergence in a

multidimensional complex space, In IEEE

Transactions on Evolutionary Computation 6(1): 58-

73.

[8] Kadirkamanathan, V., Selvarajah, K., and Fleming,

P. J.: (2006) Stability analysis of the particle

dynamics in particle swarm optimizer, IEEE

Transactions on Evolutionary Computation vol.10,

no.3, pp.245-255, Jun. 2006.

[9] Shi, Y. and Eberhart, R. C.: (1998) A modified

particle swarm optimizer, in Proc. IEEE Congr.

Evol. Comput., 1998, pp. 69–73.

[10] ____, (2001) Particle swarm optimization with fuzzy

adaptive inertia weight, in Proc. Workshop Particle

Swarm Optimization, Indianapolis, IN, 2001, pp.

101–106.

[11] Ratnaweera, A., Halgamuge, K. S., and Watson, H.

C.: (2004) Self organizing hierarchical particle

swarm optimizer with time-varying acceleration

coefficients, In IEEE Transactions on Evolutionary

Computation 8(3): 240-254.

[12] Liang, J. J., Qin, A. K., Suganthan, P. N., and

Baskar, S.: (2006) Comprehensive learning particle

swarm optimizer for global optimization of

multimodal functions, IEEE Transactions on

Evolutionary Computation, Vol. 10, No. 3, pp. 281-

295.

[13] Mendes, R., Kennedy, J., and Neves, J.: (2004) The

fully informed particle swarm: simpler, maybe

better, IEEE Transactions on Evolutionary

Computation., Vol. 8, no. 3, pp. 204-210, 2004.

[14] Das, S., Konar, A., and Chakraborty, U. K.: (2005)

Improving Particle Swarm Optimization with

Differentially Perturbed Velocity, Proceedings of

Genetic and Evolutionary Computation Conference

(GECCO-2005), USA.

[15] R. C. Eberhart, Y. Shi.: Particle swarm optimization:

Developments, applications and resources, IEEE

International Conference on Evolutionary

Computation, vol. 1 (2001), 81-86.

[16] Higashi, N., Iba, H.: (2003) Particle swarm

optimization with Gaussian mutation, IEEE Swarm

Intelligence Symposium , pp. 72-79.

[17] Xie, X., F, Zhang, W., J., and Yang, Z, L. Adaptive

particle swarm optimization on individual level,

International Conference on Signal Processing

(2002), 1215-1218.

[18] Eberhart, R. C. and Shi, Y.: (2000) Comparing

inertia weights and constriction factors in particle

swarm optimization, IEEE International Congress

on Evolutionary Computation, Vol. 1, 84-88.

[19] van den Bergh, F, Engelbrecht, P. A., (2001) Effects

of swarm size on cooperative particle swarm

optimizers, In Proceedings of GECCO-2001, San

Francisco CA, 892-899.

