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Abstract 
 

This paper describes a method for improving the final 

accuracy and the convergence speed of Particle 

Swarm Optimization (PSO) by adapting its inertia 

factor in the velocity updating equation and also by 

adding a new coefficient to the position updating 

equation. These modifications do not impose any 

serious requirements on the basic algorithm in terms 

of the number of Function Evaluations (FEs). The new 

algorithm has been shown to be statistically 

significantly better than four recent variants of PSO 

on an eight-function test-suite for the following 

performance matrices: Quality of the final solution, 

time to find out the solution, frequency of hitting the 

optima, and scalability. 

 

 

1. Introduction 
 

The concept of particle swarms, although initially 

introduced for simulating human social behavior, has 

become very popular these days as an efficient means 

of intelligent search and optimization. The Particle 

Swarm Optimization (PSO) [1, 2], does not require 

any gradient information of the function to be 

optimized, uses only primitive mathematical operators 

and is conceptually very simple. PSO emulates the 

swarming behavior of insects, animals herding, birds 

flocking and fish schooling, where these swarms 

forage for food in a collaborative manner. PSO also 

draws inspiration from the boid’s method of Craig 

Reynolds and socio-cognition [2]. Particles are 

conceptual entities, which search through a multi-

dimensional search space. At any particular instant, 

each particle has a position and velocity. The position 

vector of a particle with respect to the origin of the 

search space represents a trial solution to the search 

problem.  

PSO is however not free from false and/or 

premature convergence, especially over multimodal 

fitness landscapes. In this article, we describe a new 

variant of the basic PSO, which improves the 

performance of the algorithm in two ways. Firstly, the 

inertia factor of the classical PSO has been adapted in 

such a fashion that whenever a particle moves far 

away from the globally best position found so far by 

the swarm, the effect of its inertial velocity will be 

minimal. Secondly, a momentum factor has been 

added to the position updating equation of the classical 

PSO, which gives greater mobility to the particles 

even when their velocities become very low due to 

false convergence to some local minima.  

 

2. The Particle Swarm Optimizers 
 

2.1 The Classical PSO 
 

PSO is in principle, a multi-agent parallel search 

technique and bears many common features with other 

population based optimization techniques, such as the 

Genetic Algorithms (GAs) [3]. PSO starts with the 

random initialization of a population of candidate 

solutions (particles) over the fitness landscape. 

However, unlike other evolutionary computing 

techniques, PSO uses no direct recombination of 

genetic material between individuals during the 

search. Rather it works depending on the social 

behavior of the particles in the swarm. Therefore, it 

finds the global best solution by simply adjusting the 

trajectory of each individual towards its own best 

position and toward the best particle of the entire 

swarm at each time-step (generation). 

In a D-dimensional search space, the position 

vector of the i-th particle is given by 

),.......,,( ,2,1, Diiii xxxX =
r

and velocity of the i-th 

particle is given by ),.......,,( ,2,1, Diiii vvvV =
r

. 

Positions and velocities are adjusted and the objective 

function to be optimized )( iXf
r

 is evaluated with the 

new coordinates at each time-step. The velocity and 

position update equations for the d-th dimension of the  

i-th particle in the swarm may be represented as: 
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where 1rand and 2rand are random positive numbers 

uniformly distributed in (0,1) and are drawn anew for 

each dimension of each particle. pbest  is the personal 

best solution found so far by an individual particle 

while gbest represents the fittest particle found so far 

by the entire community. The first term in the velocity 

updating formula is referred to as the ‘cognitive part’. 

The last term of the same formula is interpreted as the 

‘social part’, which represents how an individual 

particle is influenced by the other members of its 

society. C1 and C2 are called acceleration coefficients 

and they determine the relative influences of the 

cognitive and social parts on the velocity of the 

particle. The particle’s velocity is clamped to a 

maximum value T
DvvvV ],...,,[ max,2max,1max,max =

r
. If in 

d-th dimension, div ,  exceeds dvmax, specified by the 

user, then the velocity of that dimension is assigned to 

ddi vvsign max,, *)( , where sign(x) is the triple-valued 

signum function.  

 

2.2 Some significant variants of the classical 

PSO 
 

Since its introduction by Kennedy and Eberhart in 

1995, PSO has been subjected to empirical [4-6] and 

theoretical [7,8] investigations by several researchers.  

Shi and Eberhart [9] introduced a new parameterω , 

now well-known as inertia weight, to the original 

version of PSO in the following way:  
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The inertia weight is used to balance the global and 

local search abilities. A large inertia weight is more 

appropriate for global search and a small inertia 

weight facilitates local search.  

Some other significant variants of the classical 

PSO can be traced in [9 – 14]. 

 

3. The Inertia-adaptive PSO Algorithm 
 

Premature convergence occurs when the positions 

of the most of the particles of the swarm stop changing 

over successive iterations although the global 

optimum remains undiscovered. This may happen if 

the swarm uses a small inertia weight [15] or a 

constriction coefficient [7]. From the basic equations 

of PSO, we see that if div , is small and in addition to 

that didi xpbest ,, − and did xgbest ,−  are small 

enough, div ,  cannot attain a large value in the 

upcoming generations. That would mean a loss of 

exploration power. This can occur even at an early 

stage of the search process, when the particle itself is 

the global best causing didi xpbest ,, −  and 

did xgbest ,−  to be zero and, gets damped quickly 

with the ratioω . Also the swarm suffers from loss of 

diversity in later generations if pbest  and gbest  are 

close enough [17].  

In this work we incorporate two modifications 

into the classical PSO scheme which prevent false 

convergence and helps provide excellent quality of 

final result without imposing any serious burden in 

terms of excess number of function evaluations (FEs).  

The first of these modifications involves modulation 

of the inertia factor ω according to distance of the 

particles of a particular generation from the global 

best. The value of ω for each particle is given by:   
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where )1,5.0(0 rand=ω , disti  is the current Euclidean 

distance of i-th particle from the global best i. e.  
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and max_dist is the maximum distance of a particle 

from the global best in that generation i.e. 

           )(maxargdistmax_ i
i

dist=                       (5) 

This modulation of the inertia factor ensures that 

in case of particles that have moved away from the 

global best, the effect of attraction towards global best 

will predominate. To avoid premature convergence 

this we must ensure that the particle has mobility in 

the later stages. In order to achieve our purpose, the 

position update equation is modified as follows: 

  )()1().1()( ,,, tvtxtx dididi +−−= ρ                  (6)           

where ρ is a uniformly distributed random number in 

the range (-0.25, 0.25). From now on, we shall refer to 

this new algorithm as IAPSO (Inertia-adaptive PSO).  

 

4. Experimental Results 

 

4.1 Benchmark functions 

We have used eight well-known benchmarks [14] 

to evaluate the performance of the proposed algorithm. 

Here the proposed algorithm has been compared with 

the classical PSO algorithm and four of its significant 

variants over these benchmark functions. In Table 1, D 



represents the number of dimensions (we used D = 30 

and 60). An asymmetrical initialization procedure has 

been used here following the work reported in [6]. 

 

4.2 Algorithms compared 

 

Simulations were carried out to obtain a 

comparative performance analysis of the proposed 

IAPSO algorithm with respect to: (a) the basic PSO 

(BPSO) with constant inertia weight (b) PSO-TVIW 

[5] (c) HPSO-TVAC [11] (d) MPSO-TVAC [11], and 

(e) CLPSO [12].  

 

4.3 Population Size 

 
Shi and Eberhart [15] showed that population size 

had hardly any effect on the performance of PSO. van 

den Bergh and Engelbrecht [19] also reported that 

though there is slight improvement in solution quality 

with increasing swarm sizes, a large swarm increases 

the number of function evaluations (FEs) required to 

converge to a prescribed error limit. In this work, for 

all algorithms over all problems, we kept a constant 

population size of 40 particles 

 

4.4 Simulation Strategy 
 

To make the comparison fair, the populations for 

all the competitor algorithms (for all problems tested) 

were initialized using the same random seeds. We 

have run two separate sets of experiments over the 

eight benchmark functions.  

To judge the accuracy of different PSO-variants, 

we first let each of them run for a very long time over 

every benchmark function, until the number of 

function evaluations (FEs) exceed a given upper limit 

(which was fixed at 10
6
). We then record the final best 

fitness achieved by each algorithm. In the second set 

of experiments we run the PSO-variants on a function 

and stop as soon as the best fitness value determined 

by the algorithm reaches below a predefined threshold 

value (here 10
-3

 for all benchmarks). Then we note the 

number of FEs the algorithm takes. A lower number of 

FEs corresponds to a faster algorithm. We employed 

the best set of parameters for all competitive 

algorithms, as found in the relevant literatures. For 

IAPSO, we took 00.221 == CC .  

All the algorithms discussed here have been 

developed from scratch in Visual C++ on a Pentium 

IV, 2.3 GHz PC, with 1024 KB cache and 2 GB of 

main memory in Windows XP environment. 

 
Table 1. Benchmark functions used 
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Table 2. Average and the standard deviation of the best-of-run solution for the 50 independent 
runs and the success rate tested on f1 to f8

 

 

 

 

The mean and the standard deviation (within 

parenthesis) of the best-of-run solution for 50 

independent runs of each of the six algorithms are 

presented in Table 2. Table 3 compares the 

algorithms on the quality of the best solution. 

Since all the algorithms start with the same 

initial population over each problem instance, we 

used paired t-tests to compare the means of the 

results produced by best and the second best 

algorithms. The 10-th column of Table 2 reports the 

statistical significance level of the difference of the 

means of best two algorithms.  Note that here ‘+’ 

indicates the t value of 49 degrees of freedom is 

significant at a 0.05 level of significance by two-

tailed test, ‘-’ means the difference of means is not 

statistically significant. 

Table 3 shows, for all test functions and all 

algorithms, the number of runs (out of 50) that 

managed to find the optimum solution (within the 

given tolerance) and also the average number of 

function evaluations (in parentheses) needed to find  

 

 

that solution. In Figure 1 we have graphically 

presented the rate of convergence of all the methods  

over four difficult test functions (in 60 dimensions). 

We have refrained from presenting all graphs in 

order to save space. 

A close inspection of Table 2 reveals that out of 

16 test-cases, in 13 instances, IAPSO alone could 

achieve the minimum objective function value in a 

given number of FEs. Again, in 11 cases out of 

these 13, the difference of the means of IAPSO and 

the second best algorithm (which in most of the 

cases was CLPSO) remained statistically significant. 

We note that in three cases (f7 with D = 60, f8 with D 

= 30 and 60), the proposed method’s mean is 

numerically larger (i.e., worse) than the mean of the 

competitor (MPSO-TVAC or DE), but as the 10-th 

column of Table 2 shows, this difference is not 

statistically significant in the first two cases. Table 3 

indicates that IAPSO could achieve better 

accuracies, consuming lesser amount of 

computational time. The overall results show that 

 

Fun

ctio

n 

 

D 

 

 

FEs 

Mean Best Value  

(Standard Deviation) 

 

Statistical 

Significan

ce 

Level BPSO PSO-TVIW 
MPSO-

TVAC 

HPSO-   

TVAC 
CLPSO IAPSO 

 

f1 

30 

 

5×105 2.2612e+000  

(1.16e+000) 
2.1309e-002 

(7.281e-006) 

3.6351e-003 

(4.62e-004) 

1.5223e-005  

(1.36e-005) 
5.6114e-005  

(2.51e-003) 
1.8123e-048 

(8.79e-048) 
+ 

60 
1×106 9.2084e+000 

(2.923e+000) 

4.8271e-003 

(4.29e-004) 

9.7362e-003 

(7.113e-04) 

1.8174e-004 

(1.958e-07) 

3.7621e-004 

(5.28e-006) 

8.3651e-034 

(3.73e-042) 
+ 

 

f2 

30 5×105 2.0623e+004  

(6.78e+004) 

2.1962e+002 

(8.45e+001) 

6.8372e+001 

(4.75e+00) 

7.332e+001  

(7.13e+001) 

5.670e+001  

(5.16e+001) 

2.8676e+001 

(2.68e-001) - 
60 

1×106 4.1336e+003  

(3.69e+003) 

7.0931e+002 

(6.22e+001) 

3.8274e+002 

(2.378e+001) 

1.9451e+002  

(3.94e+002) 

1.177e+002  

(8.69e+001) 

4.3567e+001 

(1.06e-001) - 
 

f3 

30 5×105 5.6352e+001  

(3.54e+001) 

4.2455e+001 

(1.96e+001) 

9.5278e+001 

(9.72e+00) 

3.9426e+001  

(3.10e+001) 

1.3107e-001  

(3.24e-001) 

1.5713e-053 

(2.07e-060) 
+ 

60 
1×106 1.2245e+002  

(5.18e+001) 

1.1283e+000 

(4.46e-01) 

3.7649e+001 

(4.27e+00) 

6.8186e+001  

(4.13e+001) 

8.4291e-001  

(1.53e+000) 

0.00e+000 

(0.00e+000) 
+ 

 

f4 

30 5×105 9.5294e-001  

(2.42e-001) 

2.0621e-002 

(5.58e-03) 

9.8035e-001 

(6.80e-03) 

1.8235e-002  

(2.93e-002) 

1.1435e-003  

(1.74e-003) 

0.00e+000 

(0.00e+000) 
+ 

60 
1×106 4.7364e+000  

(1.77e+001) 

4.0832e-001 

(5.42e-002) 

6.76249e-001 

(4.27e-001) 

1.2065e-002  

(2.14e-003) 

6.9734e-003  

(4.05e-003) 

0.00e+000 

(0.00e+000) 
+ 

 

f5 

30 5×105 4.73e+000  

(3.03e+000) 

4.0364e-001 

(2.81e-003) 

7.94504e-002 

(8.03e-003) 

3.6982e+000  

(1.95e-001) 

2.7445e-003  

(1.73e-003) 

5.8924e-016 

(0.00e+000) 
+ 

60 
1×106 8.5297e+000  

(5.23e+000) 

1.0222e+000 

(1.82e-001) 

5.2724e-001 

(4.63e-007) 

5.56e+000  

(3.08e+000) 

2.4501e-002  

(1.33e-002) 

2.9655e-015 

(5.68e+020) 
+ 

 

f6 

30 5×105 2.04e+001  

(1.43e+001) 

3.9716e-001 

(6.39e-002) 

2.8962e-001 

(2.25e-002) 

7.6843e+000  

(7.30e+000) 

3.9812e-008  

(1.95e-009) 

3.0300-013 

(1.60e-020) 
+ 

60 
1×106 1.79e+001  

(7.31e+000) 

3.0835e+001 

(4.73e-001) 

5.2184e-001 

(2.94e-004) 

1.3732e+001  

(5.63e+000) 

1.1403e-006  

(3.26e-003) 

3.9304e-010 

(1.54e-009) - 
 

     

f7 

30 5×105 5.9242e+000  

(4.88e+000) 

1.0045e+001 

(4.32e-001) 

4.8605e+001 

(1.08e+000) 

4.5170e+000  

(3.82e+000) 

9.0408e-001  

(1.77e-005) 

1.1740e-001 

(9.73e-004) 
+ 

60 1×106 2.64e+001     

(1.57e+001) 

1.0400e+001 

(8.54e-001) 

5.81493e-001 

(1.08e-002) 

1.3531e+001 

(7.77e+000) 

1.8425e-001 

(1.31e-001) 

5.1963e-001 

(2.61e-001) - 
 

f8 

30 5×105 4.92e+008  

(2.41e+009) 

2.1962e+000 

(8.45e-001) 

3.9553e-001 

(4.26e-002) 

1.32e+000  

(7.26e-001) 

8.2625e-001  

(1.11e-005) 

9.9903e-001 

(3.05e-001) - 
60 1×106 4.92e+008  

(2.41e+009) 

7.0931e+000 

(6.22e-15) 

4.855e-04 

(6.41e-05) 

1.24e+000 

(5.40e-001) 

8.47e-001 

(6.79e+000) 

6.79e+000 

(5.07e+000) 
+ 



the proposed method leads to significant 

improvements in most cases. 

Table 3 shows that the number of runs that 

converges below a pre-specified cut-off value is also 

greatest for IAPSO over most of the benchmark 

problems covered here. This indicates the higher 

robustness (i.e. the ability to produce similar results 

over repeated runs on a single problem) of the 

algorithm as compared to its other four competitors. 

Usually in the community of stochastic search 

algorithms, robust search is weighted over the 

highest possible convergence rate 
 

Table 3: Number of runs (out of 50) to optimality and the corresponding mean number of 
function evaluations

 

 

 

 

 

 

 

 

 

 

 

 

 

 
            Fig 1a. Rosenbrock’s function (f2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 
 

Fig 1.b Griewank’s function (f3) 
 

 

 

 

F 

 

D        

 

 

Threshold 

Value 

 

No. of runs converging to the cut-off, Mean No. of FEs Required and (Std Deviation) 

BPSO PSO-TVIW 
MPSO-

TVAC 

HPSO-   

TVAC 
CLPSO IAPSO 

 

f1 

30 

 
1.00e-002 

22, 9817.50 

(8723.837) 

50, 13039.65 

(336.378) 

50, 9410.04 

(1231.278) 

46, 6887.50 

(22.281) 

50, 37847.82 

(4431.90) 

50, 9492.64 

(4371.276) 

60 1.00e-002 
16, 359834.33 

(4353.825) 

50, 51729.02 

(3827.47) 

50, 133282.72 

(5326.366) 

47, 136291.70 

(238.944) 

50, 278283.22 

(32432.78) 

50, 39928.40 

(26431.627) 

 

f2 

30 1.00e-002 0 0 0 0 
3, 203854.67 

(3226.84) 

5, 79928.20 

(12345.74) 

60 1.00e-002 0 0 0 0 0 0 

 

f3 

30 1.00e-002 0 0 
5, 28372.40 

(3225.63) 

2, 26290.50 

(7553.38) 

6, 87812.83 

(409.54) 

50, 4883.78 

(382.74) 

60 1.00e-002 0 0 
2, 733210.50 

(4623.31) 
0 0 

50, 628389.73 

(14383.82) 

 

f4 

30 1.00e-002 
4, 9946.25 

(314.821) 

50, 227361.76 

(11354.287) 

50, 125092.84 

(2473.98) 

18, 82724.46 

(4523.57) 

46, 92071.38 

(4651.34) 

50, 3169.64 

(761.65) 

60 1.00e-002 
2, 187635.50 

(19224.46) 

29, 

287416.91 

(7218.93) 

3, 633782.33 

(1217.25) 

2, 92280.50 

(3468.35) 
0 

50, 6176.84 

(671.49) 

 

f5 

30 1.00e-002 
4, 139584.25 

(2563.38) 

6,347285.83 

(3382.229) 

10, 129372.80 

(8742. 93) 

8, 76660.00 

(4412.46) 

12, 80566.67 

(7823.76) 

50, 3955.22 

(451.89) 

60 1.00e-002 
2, 162258.50 

(6922.83) 
0 

3, 664722.33 

(4722.37) 

4, 89840.25 

(6823.86) 
0 

50, 4185.62 

(447.81) 

 

f6 

30 1.00e-002 
0 

 

0 

 

0 

 

0 

 

24, 97276.67 

(3517.88) 

50, 5704.02 

(728.45) 

60 1.00e-002 
0 

 

0 

 

0 

 
0 

0 

 

50, 6267.62 

(265.82) 

       

f7 

30 1.00e-002 
0 

 

0 

 

0 

 
0 

2, 126380.50 

(4627.73) 

 

7, 7868.56 

(251.67) 

60 1.00e-002 
0 

 

0 

 

0 

 

0 

 

0 

 

0 

 

 

f8 

30 1.00e-002 
0 

 

0 

 

0 

 
0 

6, 2400.50 

(3712.5) 
0 

60 1.00e-002 
0 

 

0 

 

0 

 

0 

 

0 

 

0 

 



 

 

 

                                    

 

 

 

   

 

   

 

 

 
 
 

Fig 1.c Ackley’s function (f5) 
 

Figure 1. Variation of the mean best value 
with time (for dimension = 60) 
 

5. Conclusions 
 

This work has presented a new, efficient PSO 

algorithm, which self-adapts the inertia weight over 

different fitness landscapes. The new method has been 

compared against the basic PSO and four well-known 

PSO-variants, using an eight-function test suite, on the 

following performance metrics: (a) solution quality, 

(b) speed of convergence, and (c) frequency of hitting 

the optimum. It has been shown to outperform its 

nearest competitor in a statistically meaningful way 

for majority of the test cases. Since all the algorithms 

start with the same initial population, difference in 

their performances must be due to the difference in 

their internal operators and parameter values. Future 

research will focus on studying the dynamics of the 

particles under the proposed changes, in a 

mathematical way.   
 

References 
 

[1] Kennedy, J., Eberhart, R. C: (1995) Particle swarm 

optimization, In Proceedings of IEEE International 

conference on Neural Networks. 1942-1948. 

[2] Kennedy, J., Eberhart, R. C., and Shi, Y.: (2001) 

Swarm Intelligence. Morgan Kaufman, USA. 

[3] Goldberg, D. E.: (1975) Genetic Algorithms in 

Search, Optimization and Machine Learning, 

Addison-Wesley, Reading, MA. 

[4] Kennedy, J.: (2003) Bare bones particle swarms, In 

Proceedings of IEEE Swarm Intelligence 

Symposium, 80-87. 

[5] Shi, Y. and Eberhart, R. C.: (1999) Empirical Study 

of particle swarm optimization, In Proceedings of 

IEEE International Conference Evolutionary 

Computation, Vol. 3 , 101-106. 

[6] Angeline, P. J.: (1998) Evolutionary optimization 

versus particle swarm optimization: Philosophy and 

the performance difference, Lecture Notes in 

Computer Science, vol. 1447, Evolutionary 

Programming VII, 84-89. 

[7] Clerc, M. and Kennedy, J.: (2002) The particle 

swarm - explosion, stability, and convergence in a 

multidimensional complex space, In IEEE 

Transactions on Evolutionary Computation 6(1): 58-

73. 

[8] Kadirkamanathan, V., Selvarajah, K., and Fleming, 

P. J.: (2006) Stability analysis of the particle 

dynamics in particle swarm optimizer, IEEE 

Transactions on Evolutionary Computation vol.10, 

no.3, pp.245-255, Jun. 2006. 

[9] Shi, Y. and Eberhart, R. C.: (1998) A modified 

particle swarm optimizer, in Proc. IEEE Congr. 

Evol. Comput., 1998, pp. 69–73. 

[10] ____, (2001) Particle swarm optimization with fuzzy 

adaptive inertia weight, in Proc. Workshop Particle 

Swarm Optimization, Indianapolis, IN, 2001, pp. 

101–106. 

[11] Ratnaweera, A., Halgamuge, K. S., and Watson, H. 

C.: (2004) Self organizing    hierarchical particle 

swarm optimizer   with time-varying acceleration 

coefficients, In IEEE Transactions on Evolutionary 

Computation 8(3): 240-254. 

[12] Liang, J. J., Qin, A. K., Suganthan, P. N., and 

Baskar, S.: (2006) Comprehensive learning particle 

swarm optimizer for global optimization of 

multimodal functions, IEEE Transactions on 

Evolutionary Computation, Vol. 10, No. 3, pp. 281-

295. 

[13] Mendes, R., Kennedy, J., and Neves, J.: (2004) The 

fully   informed particle swarm: simpler, maybe 

better, IEEE Transactions on Evolutionary 

Computation., Vol. 8, no. 3, pp. 204-210, 2004. 

[14] Das, S., Konar, A., and Chakraborty, U. K.: (2005) 

Improving Particle Swarm Optimization with 

Differentially Perturbed Velocity, Proceedings of 

Genetic and Evolutionary Computation Conference 

(GECCO-2005), USA. 

[15] R. C. Eberhart, Y. Shi.: Particle swarm optimization:   

Developments, applications and resources, IEEE 

International Conference on Evolutionary 

Computation, vol. 1 (2001), 81-86. 

[16] Higashi, N., Iba, H.: (2003) Particle swarm 

optimization with Gaussian mutation, IEEE Swarm 

Intelligence Symposium , pp. 72-79. 

[17] Xie, X., F, Zhang, W., J., and Yang, Z, L. Adaptive    

particle swarm optimization on individual level, 

International Conference on Signal Processing 

(2002), 1215-1218. 

[18] Eberhart, R. C. and Shi, Y.: (2000) Comparing 

inertia weights and constriction factors in particle 

swarm optimization, IEEE International Congress 

on Evolutionary Computation, Vol. 1, 84-88. 

[19] van den Bergh, F, Engelbrecht, P. A., (2001) Effects 

of swarm size on cooperative particle swarm 

optimizers, In Proceedings of GECCO-2001, San 

Francisco CA, 892-899. 


